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ABSTRACT 

Climate change is expected to have both positive and negative impacts on northern 

ungulate populations.  Moose (Alces alces) will likely benefit from an increase in the 

growing season length and frequency of wildfire.  However, increases in extreme 

weather events may result in moose population declines, particularly for nutritionally 

stressed moose populations.  Management strategies to reduce the nutritional stress of 

populations may become increasingly important.  We used stage-structured population 

models to examine the impact of deep-snow events on moose population trajectories 

and evaluated female harvest strategies designed to mitigate nutritional stress by 

decreasing intraspecific competition.  Population trajectories were primarily influenced by 

young adult and prime adult survival.  Populations held at low density by predation are 

likely buffered against the effects of severe weather events, whereas nutritionally 

stressed populations are vulnerable to population declines from the same environmental 

conditions.  Harvest of cow-calf pairs may be an effective way to maximize harvestable 

yield and maintain population resilience when nutritional condition is poor.  Moose 

population abundance over the long-term may become more variable due to the effects 

of climate change.  Future modeling needs to incorporate alternative harvest and climate 

scenarios to help us better understand how we can promote moose population 

resilience. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

 

Although climate change is predicted to decrease overall biodiversity, the responses 

of individual species remain uncertain (Bellard et al. 2012).  Amplified warming at 

northern latitudes is likely to have particularly striking impacts on both northern 

ecosystems and the species that inhabit them (Intergovernmental Panel on Climate 

Change, IPCC 2007).  Large ungulates often play important roles in community and 

ecosystem ecology where they influence predator-prey dynamics, nutrient cycling, and 

plant successional trajectories (Kielland et al. 2006, Pastor et al. 2006).  Additionally, 

large ungulates provide important social and economic resources.  This is certainly true 

in many northern regions where traditional subsistence cultures often depend on 

resources provided by caribou, reindeer or moose (Krupnik and Jolly 2002, Nelson et al. 

2008).   

Northern ungulate species are likely to experience both positive and negative 

impacts of climate change.  For example, many northern ungulates may benefit from 

increases in growing season length (Schwartz et al. 1988, Renecker and Schwartz 2007, 

Parker et al. 2009) and fire frequency (Franzmann and Schwartz 1985, MacCracken and 

Viereck 1990), both of which are expected to have a positive influence on forage quality 

and availability.  In addition, many northern ungulates are likely buffered from the 

negative effects of climate change by their relatively high phenotypic plasticity (Morris et 

al. 2008, Canale et al. 2012) and dispersal ability (Schloss et al. 2012).  However, 
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increases in the frequency of extreme environmental events, (e.g. heavy precipitation, 

prolonged drought, large fires) are likely to have substantial negative impacts on 

populations of northern ungulates (Bishop and Rausch 1974, Hansen et al. 2011).  A 

better understanding of the likely population responses of northern ungulates to climate 

change will aide in future management and conservation of these important species.  

In the northern boreal forest, moose (Alces alces) contribute greatly to ecosystem 

function by influencing plant demography, plant succession, and nutrient cycling.  For 

example, herbivory by moose exerts control over litter decomposition through fecal 

inputs high in microbial nitrogen, which influences soil nitrogen cycling and plant 

productivity (Kielland et al. 2006).  However, sustained heavy browsing pressure on 

preferred deciduous species such as willow (Salix spp.), paper birch (Betula papyrifera), 

and aspen (Populus tremuloides) often leads to high mortality of these species and 

results in a transition to less productive and less palatable tree species (Kielland and 

Bryant 1998, Pastor et al. 2006, Butler and Kielland 2008).  In addition to being 

important ecosystem engineers (Jones et al. 1994), moose are a key game species.  For 

example, in Scandinavia, moose is by far the most important game species, and it 

accounts for more than 2% of the yearly meat consumption in Norway and Sweden 

(Olaussen and Skonhoft 2011).  In Interior Alaska, moose have traditionally represented 

the primary terrestrial food resource for subsistence users (Nelson et al. 2008), allowing 

them to ameliorate the high cost of living as well as maintain a subsistence lifestyle 

(Krupnik and Jolly 2002, Nelson et al. 2008). 

Northern populations of moose are expected to benefit from projected increases in 

spring and fall temperatures (Schwartz et al. 1988, Parker et al. 2009) by way of access 

to higher quality browse earlier in the spring and later in the fall (Myneni et al. 1997, 
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Keyser et al. 2000, Parmesan 2007).  These are critical times of the year when moose 

are either recovering from or preparing for the winter.  This is especially true for juvenile 

moose, which generally have higher maintenance costs and lower body reserves 

(Parker et al. 2009), and for parturient cows experiencing high costs associated with late 

gestation and lactation in the spring and early summer (Parker et al. 2009). 

However, warmer summer temperatures are expected to result in increased heat 

stress for moose (Murray et al. 2006; Lenarz et al. 2009, 2010; van Beest et al. 2012).  

Despite such direct, negative implications of warmer summer temperatures, temperature 

increases will likely benefit moose overall through increases in browse availability.  In 

addition, an increase in fire frequency (Flannigan et al. 2000, 2005; Kasischke et al. 

2010), as a result of warmer temperatures (Flannigan et al. 2005, Westerling et al. 

2006), is expected to have a positive impact on moose by increasing forage quality and 

availability (MacCracken and Viereck 1990).  However, the positive implications of 

increased fire will depend on fire severity and the extent and uniformity of area burned.  

Fire severity and extent will greatly influence the type of vegetation regeneration, and 

burn uniformity will determine whether or not residual trees or islands are left to provide 

seedfall and cover from predators (Fisher and Wilkinson 2005).   

Like many large ungulates that inhabit unpredictable environments, moose 

populations are quite resilient to extreme environmental conditions (Gaillard et al. 2000).  

An iteroparous life history allows moose to forgo reproductive costs under harsh 

environmental conditions and instead invest in adult survival and future reproductive 

events.  Despite their precocity, juveniles of large ungulates are vulnerable to extreme 

environmental events because of their low body reserves and relatively high 

maintenance costs (Parker et al. 2009).  However, because of the high resilience of 
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adults, extreme environmental conditions rarely result in substantial population declines 

for large ungulates (Gaillard et al. 2000).  In addition to their reproductive plasticity, 

moose show great behavioral plasticity.  Under heat stress moose will seek out 

coniferous habitats for thermal cover (Dussault et al. 2004, van Beest et al. 2012) or 

seek refuge in ponds and lakes, which also offer good forage in the form of aquatic 

plants.  If warmer summer temperatures lead to reduced forage quality, moose may 

adjust their foraging range across elevational and latitudinal gradients to access higher-

quality vegetation (Leblond et al. 2010, van Beest et al. 2011).  When snow depth begins 

to impede movement, moose disperse into areas with shallower snow in an effort to 

reduce energetic costs and find available forage (Hundertmark et al. 1990, Ballard et al. 

1991, Peek 2007).  These behaviors notwithstanding, it is clear that moose populations 

vary substantially in nutritional condition, which will influence their capacity to respond to 

environmental challenges.   

Although moose are well adapted to cold temperatures, deep snow decreases forage 

availability and increases the energetic costs of movement (Coady 1974).  Even under 

mild snow conditions, moose in good nutritional condition enter into a negative energy 

balance during the winter (Renecker and Hudson 1985).  Moose with poor nutrition are 

vulnerable to substantial mortality during deep snow years (Bishop and Rausch 1974, 

Peterson et al. 2003).  Increased precipitation at high latitudes (IPCC 2007) leading to 

deeper snow (Groisman and Easterling 1994, Zhang et al. 2000, Hyvarinen 2003, Kohler 

et al. 2006) may result in nutritional stress of moose populations and subsequent 

population declines. 

Whereas many Interior Alaska moose populations are held at low density by 

predation (Gasaway et al. 1992), other populations exist at high density due to relatively 
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low predator densities or a combination of low predator densities and relatively mild 

winters (Boertje et al. 2009).  Managers also seek to maintain high population densities 

to provide maximum harvest opportunity (Boertje et al. 2009).  However, high-density 

populations are more vulnerable to substantial declines from extreme environmental 

events (Boertje et al. 2009). 

Overall, high-density populations that exhibit poor nutrition are likely to benefit from 

longer growing seasons and increased fire because increased nutrition, at least in the 

short term, will reduce vulnerability to the effects of environmental stress.  However, 

unless harvest is managed to curb population growth, populations that experience low 

predation will likely increase until the available resources are depleted, at which point the 

population will once again become nutritionally-stressed and at increased risk of decline 

from severe weather events.   

 We used stage-structured models to examine the impact of deep snow events on 

moose population trajectories and evaluate harvest strategies to mitigate negative 

impacts of high population density.  Models were parameterized from Interior Alaska 

moose populations varying in nutritional condition and predation pressure. Specifically, 

we compared:  1) population trajectories of different moose populations that exhibit 

variation in survival during a deep snow year as a result of their nutritional state and 

level of predation, and 2) two possible female harvest strategies aimed at increasing 

health of a nutritionally-stressed moose population.
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CHAPTER 2 

 

POPULATION MODELS OF INTERIOR ALASKA MOOSE: IMPACTS OF 

NUTRITIONAL CONDITION ON RESPONSES TO WINTER SEVERITY AND 

POTENTIAL MANAGEMENT STRATEGIES1 

 

 
ABSTRACT 

Nutritionally stressed moose populations are likely to be more vulnerable than 

populations exhibiting good nutritional condition to both direct and indirect impacts of 

changing climate.  Populations exhibiting nutritional stress may benefit from increased 

forage availability following fire but they are also more susceptible to negative impacts of 

extreme weather events, both of which are expected to increase in frequency.  

Management strategies to reduce the nutritional stress of populations may become 

increasingly important.  We constructed female-only stage-structured population models, 

parameterized using data from Interior Alaska moose (Alces alces gigas) populations 

varying in nutritional condition and predation pressure.  We examined the impact of 

deep-snow events on moose population trajectories and evaluated two female harvest 

strategies designed to mitigate nutritional stress by decreasing intraspecific competition.  

Harvest rates for both non-accompanied adult females (cows ≥ 1 year that are not 

accompanied by calves) and cow-calf pairs were held constant (6% of female 

                                                        
1Carroll, C. J., P. Doak, and K. Kielland. 2013. Population models of Interior Alaska 

moose:  impacts of nutritional condition on responses to winter severity and potential 

management strategies. Prepared for Alces. 
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population) in order to achieve the population objective by the end of the 5-year-period.  

Elasticity analysis predicted that population trajectories would be strongly influenced by 

prime adult female survival yet relatively insensitive to changes in recruitment and calf 

survival.  Models of high-nutrition populations, where only calf survival was influenced by 

a deep-snow event, predicted population growth regardless of the frequency of a deep-

snow event.  The same was true for the low-nutrition population when deep snow was 

assumed to only influence calf survival; however, when survival of all age classes was 

influenced by deep snow the model predicted negative population growth.  Populations 

held at low density by predation are likely buffered against the effects of severe weather 

events, whereas nutritionally stressed populations are vulnerable to population declines 

from the same environmental conditions.  Both harvest strategies produced the desired 

decrease in population size within 5 years when harvesting 6% of female population 

each year, but 54% more moose (11% more biomass) could be harvested when calves 

were included in the harvest.  Population models provide a useful management tool for 

both predicting population dynamics under varying conditions and exploring possible 

harvest strategies aimed at reducing populations when deemed necessary for sustained, 

long-term yield. 

INTRODUCTION 

Moose populations are sensitive to both direct and indirect effects of climate.  Indirect 

effects of climate, acting through changes in forage quality and availability, are 

constantly exerting an influence on population growth, whereas direct effects of climate 

rarely have major impacts on population growth when acting alone.  Both direct and 

indirect effects, acting together, however, can have substantial impacts on population 

dynamics of moose.  Climate change across boreal ecosystems is predicted to involve 
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increases in growing season length (Myneni et al. 1997, Keyser et al. 2000, Schwartz et 

al. 2006, Parmesan 2007), frequency of wildfires (Kasischke and Turetsky 2006, 

Westerling et al. 2006, Kasischke et al. 2010), frequency of extreme environmental 

events (Intergovernmental Panel on Climate Change, IPCC 2007), and disease and 

parasite occurrence (Murray et al. 2006, Samuel 2007, Hoberg et al. 2008, Laaksonen et 

al. 2010).  Moose forage quantity and quality are likely to increase with increases in 

growing-season length and fire frequency, resulting in improved body condition, as well 

as increases in fecundity and juvenile survival.  In contrast, increases in extreme 

environmental events, such as increases in heavy snowfall or drought as well as 

increases in disease and parasite incidence are likely to negatively impact moose.   

Warmer spring temperatures leading to earlier snowmelt (Groisman et al. 1994) and 

earlier leaf emergence (Myneni et al. 1997, Keyser et al. 2000, Parmesan 2007) will 

likely increase forage availability and quality for moose at a critical time when body 

reserves are low (Renecker and Schwartz 2007, Parker et al. 2009).  Earlier access to 

these important resources will enable moose to achieve a higher nutritional state over 

the summer, likely increasing both conception rates in the fall (Cook et al. 2004) and 

survival through the following winter.  Additionally, a longer snow-free period in the fall 

that prolongs access to higher quality forage may contribute to higher productivity and 

winter survival (Schwartz et al. 1988).  Increases in forage quality and availability will 

likely have the greatest impact on winter survival of juveniles due to their low body 

reserves and high metabolic demands relative to adult moose (Parker et al. 2009). 

In Interior Alaska, excluding cold, poorly drained sites, post-fire successional 

trajectories typically result in the return of more productive deciduous tree species 

(Chapin et al. 2006) that are preferred by moose.  Thus, recent increases in northern 
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boreal forest fire frequency and severity (Kasischke et al. 2010) have positive 

implications for moose nutrition.  Increased availability of higher quality forage following 

fire has been linked to an increase in body condition and moose fecundity (Franzmann 

and Schwartz 1985) and is likely to increase winter survival of juveniles.   

In general, climate change models predict an increase in the frequency of 

heavy-precipitation events at high latitudes (IPCC 2007) with some forecasting increases 

in heavy snowfall across the Unites States and Canada (Groisman and Easterling 1994, 

Zhang et al. 2000).  Moose survival can be negatively impacted by snow depth because 

it increases energetic demands while simultaneously restricting movement and access 

to forage (Coady 1974, Parker et al. 2009). 

The effects of deep snow on moose populations can be exacerbated in populations 

where nutritional condition is poor, making these populations more vulnerable to the 

impacts of deep snow (Bowyer et al. 2000, Boertje et al. 2009).  Moose with poor 

nutrition are less likely to have the body reserves to buffer them against the impacts of 

higher energetic requirements and lowered food intake during periods of deep snow.  In 

addition, due to over-browsing, the habitat of a nutritionally stressed population is likely 

to contain forage of low quality and low availability.  Starvation, resulting from a 

combination of high population densities and severe winter conditions, is thought to be 

responsible for precipitous declines in moose populations in various parts of their range 

(Bishop and Rausch 1974, Peterson et al. 2003). 

In Alaska, many moose populations are largely maintained at low densities by 

predation (Gasaway et al. 1992, Van Ballenberghe and Ballard 1994), but some 

populations experience relatively low predation pressure and reach high densities 

resulting in nutritional stress (Boertje et al. 2007, 2009).  Predator-limited and 
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nutritionally stressed populations will likely respond differently to climate change.  

Whereas predator-limited populations are expected to have little or no capacity to grow 

in response to increased forage availability caused by longer growing seasons and 

increased wildfire (Weixelman et al. 1998), their excellent body condition buffers against 

the negative effects of severe winter conditions (Bowyer et al. 1998).  Thus, excepting 

effects mediated by predator-prey interactions, these populations may respond little to 

climate change.  In contrast, we expect that nutritionally stressed moose populations will 

respond positively to longer growing seasons and increased fire frequency.  However, 

nutritionally stressed moose populations are also at increased risk of decline from 

severe weather events such as deep snow.   

Although nutritionally stressed moose populations are more susceptible to 

environmental stressors, the increased density provides higher surplus for harvest 

(Boertje et al. 2009).  Management of moose populations at the upper end of their 

nutritional limitation requires a balance between population health and harvest 

opportunity.  Female harvest strategies are often used to moderate population growth, 

improving population health and increasing harvest opportunity (Timmermann and Buss 

2007, Young and Boertje 2011).   

Stage-structured population models can be used as a valuable tool to compare and 

contrast the impacts of climate change on specific age classes in different population 

states.  For example, studies employing stage-structured models have suggested that 

impacts of climate change may both increase vulnerability of resource-limited 

populations (Wilmers et al. 2007) and lead to substantial shifts in moose distribution 

(Murray et al. 2006, Lenarz et al. 2010).  Moreover, stage-structured population models 

can be used to explore harvest strategies targeting different age classes to most 
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efficiently achieve management objectives (Saether et al. 2001, 2009; Nilsen et al. 2005; 

Xu and Boyce 2010).  

We used stage-structured models to examine the impact of deep-snow events on 

moose population trajectories and evaluate harvest strategies to mitigate negative 

impacts of high population density.  Models were parameterized from Interior Alaska 

moose populations varying in nutritional plane and predation pressure.  Specifically, we 

compared:  1) trajectories of moose populations that exhibit variation in survival during a 

deep-snow year as a result of their nutritional condition and level of predation, and 2) 

two possible female harvest strategies aimed at increasing health of a nutritionally 

stressed moose population. 

METHODS 

Model Structure 

To better understand moose population responses to an increase in the frequency of 

years with deep snow, we constructed female-only, post-reproductive, stage-structured 

population models (Caswell 2001).  Nutritional state and predation level are likely to 

impact the response of moose populations to an increase in the frequency of years with 

deep snow.  Therefore, we parameterized models for three different types of moose 

populations.  Moose populations are commonly found to exist either as nutritionally 

stressed or nutritionally robust populations.  Nutritional stress is often the result of low 

predation pressure, which can lead to rapid population growth and high intraspecific 

competition (low nutrition/low predation: LN/LP).  Conversely, heavy predation pressure 

can greatly inhibit population growth, thereby reducing intraspecific competition and lead 

to a nutritionally robust population (high nutrition/high predation: HN/HP).  In addition to 

nutritionally stressed and nutritionally robust populations we considered a population 
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with high nutrition and low predation (high nutrition/low predation: HN/LP), both as a 

point of comparison for the other models and to represent populations that have recently 

been released from nutritional stress or high predation, as could occur during 

colonization of new habitat or predator-control.  

Based on similarities in survival and reproduction among ages, population models 

included 5 stages:  calves, yearlings, young adults (2 to 4 years), prime adults (5 to 11 

years), and old adults (12+ years).  Age-specific survival and reproductive rates reported 

in the literature (Boertje et al. 2009, Keech et al. 2011) were weighted by within-stage 

stable age distributions (Caswell 2001) to calculate annual stage-specific survival and 

reproductive rates (Table 1).  

Recruitment values make up the first row of the transition matrix, and survival values 

within each stage and survival to succeeding stages completed the matrix (Fig. 1).  For 

stages lasting more than one year, we calculated the probability of a surviving individual 

growing to the next stage:   

 

    



 x 

 x













Tx


 x













Tx 1

 x













Tx

1

 (1) 

Where x represents the stage, σ is the stage-specific survival rate, T is the stage 

duration, and λ is an initial estimate of the finite rate of increase (Caswell 2001).  

Therefore, survival and growth to the next stage (Gx) is the product of the stage-specific 

survival rate (σx) and the probability of a surviving individual growing to the next stage 

(  



 x).  Survival within a stage (Px) is the product of the stage-specific survival rate (σx) 

and the probability of an individual surviving and staying within the same stage-class (1-

  



 x).   
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We calculated fecundity (average number of calves/female/yr) using the equation:  

     



mx  px(1 twx )  (2) 

Where px is the yearly probability of a female in stage x giving birth, and twx is the 

average twinning rate of females within stage x (Boertje et al. 2009). 

Recruitment values (Fx) for our post-reproductive, female-only model assume sex 

ratio parity in calves (Schwartz and Hundertmark 1993, Harris et al. 2008, Boertje et al. 

2009) and combine the probability of surviving over the year with fecundity at the end of 

the year. 

     



Fx  0.5*[(Px * mx ) (Gx * mx1)] (3) 

Model Parameterization 

To parameterize the LN/LP model we used 12 years (1996-2007) of age-specific vital 

rates from a subpopulation of moose occupying the Tanana Flats and adjacent foothills 

of the Alaska Range just south of Fairbanks in central Interior Alaska (Table 1; Boertje et 

al. 2009).  Several nutritional indices, including an assessment of browse utilization, 

indicated that this population was on a low nutritional plane (Boertje et al. 2007).  

Predation rates on moose occupying the Tanana Flats are low (19% of the post-calving 

population is killed by predators) compared to other moose populations in Interior Alaska 

(31-41% of the post-calving population is killed by predators; Boertje et al. 2009).  

Although predators account for the majority of calf mortality (92%), calf mortality is 

relatively low (50%) compared to other Interior Alaska populations (Boertje et al. 2009).  

To parameterize the HN/HP model we used age-specific data collected near McGrath 

in western Interior Alaska where heavy predation limited population growth (Table 1; 

Keech et al. 2011).  Because bears are responsible for most predator-induced mortality 

of calves whereas wolves are responsible for most predator-induced mortality of 
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yearlings and adults we chose to use calf survival rates from 2001 to 2002, prior to bear 

removal initiated in 2003, and yearling and adult survival rates from 2001 to 2003 prior to 

intensive wolf removal initiated in 2004 (Keech et al. 2011) to represent a population with 

high predation (Table 1).  Nutritional indices indicated moose in this population were in 

good nutritional condition (Boertje et al. 2007, Keech et al. 2011).  Predation rates on 

moose were identified as being high relative to other Interior Alaska moose populations 

(34% of the post-calving population is killed by predators; Boertje et al. 2009).  Predators 

accounted for the majority of calf mortality (94%), which was high (70%) compared to the 

Tanana Flats population (Keech et al. 2011). 

The HN/LP model was also parameterized using data from McGrath, Alaska, but 

subsequent to predator removal (Table 1; Keech et al. 2011).  To represent a population 

with low predation, we used calf survival from 2003 to 2007 and yearling and adult 

survival from 2004 to 2007 because these time periods corresponded to periods 

following predator removal for each respective stage (see above).  Parturition and 

twinning rates remained high for ≥ 2 years following the initiation of predator removal, 

and it was assumed this population occupied a high nutritional plane (Keech et al. 2011).  

Estimated predation rates following predator removal were low (16% of the post-calving 

population is killed by predators; M. A. Keech, Alaska Department of Fish and Game, 

unpubl. data).  Although predation was still the proximate cause of calf mortality (65%) 

total calf mortality following predator removal was relatively low (54%; Keech et al. 

2011).  

Fifty years of data (1960-2010) from the Tanana Flats/Alaska Range foothills 

population, where the density ranged from 0.2 to 1.8 moose/km2, were used to examine 

density-dependent effects on each vital rate.  Blood (1973) reported that for moose a 
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time lag of two years best explained the relationship between recruitment values and 

population density.  Therefore, we used linear regressions to examine relationships 

between vital rates and population density with time lags of up to two years (Nt, Nt-1, and 

Nt-2).  All vital rates were natural log transformed for the analyses (Morris and Doak 

2002).  We found no evidence of density-dependent effects on survival or parturition of 

any age-class within the Tanana Flats/Alaska Range foothills population.  However, in 

the same population, twinning rates significantly declined with population density with a 

time lag of 1 year (P = 0.02; Fig. 2) and 2 years (P = 0.01).  The LN/LP population matrix 

model was parameterized both with and without density-dependence on twinning rates.  

Population projections with and without density-dependence were similar over the 30-

year time frame of our projections, so we opted to use only density-independent models 

for our analyses.  Based on the lack of strong density-dependent effects in the high-

density Tanana Flats/Alaska Range foothills population, we assumed no density-

dependent effects on survival or reproduction in low-density (0.3 to 0.6 moose/km2) 

populations used to parameterize the high-nutrition population models.   

Environmental stochasticity was not included in the models because we did not have 

access to data allowing the estimation of variance in vital rates.  Large ungulates tend to 

exhibit low interannual variance in adult survival rates; however, calf survival rates and 

fecundity rates often exhibit high interannual variance (Gaillard et al. 2000). 

Model Performance 

Yearly estimates of total female population size generated by the LN/LP model were 

compared to female population abundance estimates of the Tanana Flats/Alaska Range 

foothills moose population from 1999 to 2009 (ADF&G 2010) to evaluate model 

performance.  Estimates of female population abundance incorporated a geospatial 
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population estimate (GSPE; Ver Hoef 2008) for observed moose as well as a composite 

sightability correction factor (SCF) to account for females not seen (Boertje et al. 2009).  

Goodman’s formula for estimating the exact variance of products (Goodman 1960) was 

used to calculate 90% confidence intervals around the combined estimate and SCF (see 

Keech et al. 2011).  For a detailed explanation of how total population abundance 

estimates were calculated for the Tanana Flats/Alaska Range foothills population see 

Boertje et al. (2009).  We restricted our comparison to these years because the GSPE 

survey method (Ver Hoef 2008) provided a greater degree of confidence in the 

population abundance estimates than earlier survey methods.  The initial female 

population size for the model was derived from the 1999 fall population estimate 

(10,207/13,044 km2), from which we calculated the female segment of the population 

based on the estimated number of adult females and half of the proportion of yearlings 

and calves (assuming equal sex parity for yearlings and calves).  The adult age-structure 

could not be determined from survey data.  Therefore, we assumed the starting 

population was at the stable stage distribution from preliminary density-independent 

population projections (Table 2).  It was likely the female population was at or near 

stable stage distribution in 1999 because females were not being harvested in large 

numbers and there were no large mortality events that would have resulted in a shift in 

the proportion of females per stage-classes.  In years when females accounted for a 

proportion of the harvest we included harvest mortality in the model.  The total number of 

harvested females took into consideration reported harvest, unreported harvest, and 

wounding loss (Boertje et al. 2009).  Because hunter records did not distinguish yearling 

and adult stages, we divided harvest mortality proportionally among stages following the 

yearly stage distributions.  
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Yearly estimates of total female population size from both the HN/HP and HN/LP 

models were compared to female population abundance estimates (see Boertje et al. 

2009 for explanation of methods used to estimate abundance) from a population of 

moose occupying a 2,896 km2 study area near McGrath, Alaska from 2001 to 2007 

(ADF&G 2010) to determine model performance.  Unlike Boertje et al. (2009), sightability 

correction factors (SCFs), were calculated annually for the moose population near 

McGrath, Alaska (Keech et al. 2011).  We restricted the comparison to these years 

because the GSPE survey method (Ver Hoef 2008) provided a greater degree of 

confidence in the population abundance estimates than earlier survey methods.  The 

initial female population density was set to that estimated for the study area during the 

2001 fall survey (640/2,896km2) following the same assumptions as the LN/LP model 

(see above; Table 2).  Because data used to parameterize the HN/HP model and HN/LP 

models are from the same population of moose we projected total female population size 

for the first two years (2002-2003) using vital rate data from the HN/HP model and the 

remaining four years (2004-2007) using vital rate data from the HN/LP model. 

Sensitivity of Population Growth Rate to Changes in Vital Rates 

Elasticity values were calculated to determine the sensitivity of population growth 

rates to proportional changes in stage-specific survival and reproduction.  This was done 

manually by subtracting 1% of the value of the original vital rate from the original vital 

rate (roriginal) to produce a new vital rate (rnew) and a new growth rate (λnew) (Morris and 

Doak 2002).  These values were used to determine the proportional effect of each vital 

rate on population growth. 
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Projected Increase in Deep Snow Years 

The projected increase in frequency of heavy snowfall events that result in deep snow 

is expected to have a negative impact on moose populations, especially among 

populations that exhibit low nutritional status.  Although some aspects of climate change 

are expected to have a positive influence on moose populations (e.g. increases in the 

length of growing season, increases in fire frequency), they are not explicitly represented 

in the model.  

Snow Depth 

Moose survival rates can be strongly influenced by snow depth, which can lower 

overwinter survival by restricting movement to the extent that energy requirements 

cannot be met (Coady 1974).  Coady (1974) suggested deep snow depths that 

exceeded 70-cm would restrict movements of adult moose and that snow depths greater 

than 90-cm would likely result in an inability to maintain adequate food intake.  We 

developed a dichotomous classification of snow depth, where average winter snow 

depth was calculated as the mean of the depths on 15 January, 15 February, and 15 

March (Ballard et al. 1991, Keech et al. 2011).  When the average snow depth was 

equal to or exceeded 90-cm it was classified as a deep snow year.   

Historical snow depth data archived by the Alaska Climate Research Center 

(http://climate.gi.alaska.edu/) over the last 30 years (1982-2012) was used to establish 

the historical frequency of deep snow years.  Data from two different areas in Interior 

Alaska that have experienced different levels of snow depth was used to represent a 

http://climate.gi.alaska.edu/
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minimum (Fairbanks, Alaska; 2 deep snow years in last 30 years) and maximum 

frequency (McGrath, Alaska; 8 deep snow years in last 30 years) of deep snow years.  

In addition, we used 4 deep snow years in a 30-year period to represent a moderate 

frequency of deep snow.  Although the frequency of deep snow years was set at 2, 4, or 

8 during the time frame modeled, the sequence of normal and deep snow years was 

random within each model run.   

Population Responses to Deep Snow Events 

We used the matrix population model to compare moose population responses to 

varying frequencies of deep snow years over a 30-year-period.  The model was 

parameterized based on estimated changes in survival rates during deep snow years.  

We used 30-year trajectories because longer trajectories become increasingly less 

realistic when modeling wildlife populations and shorter trajectories might not capture 

important population dynamics for a long-lived species such as moose.  While deep-

snow conditions can impact survival of all age classes of moose, calf survival is 

particularly vulnerable regardless of the nutritional state of the population.  As the 

nutritional state of a population decreases, older age groups may also become more 

vulnerable to mortality from deep-snow years because of poor body condition, likely at 

least partly as a result of reduced feeding efficiency due to tooth wear (Klein and Olson 

1960, Skogland 1988, Hindelang and Peterson 1994).   

Age-specific survival data during a deep snow year were unavailable for the Tanana 

Flats or any other high-density Alaska moose population.  Therefore, we based the 

parameterization of the LN/LP population model on age-specific survival data from a 

moose population in Isle Royale National Park, MI following a severe winter (Fig. 3b; J. 

A. Vucetich, Michigan Tech., unpubl. data).  Poor nutritional condition (Peterson 1995) 
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coupled with severe winter conditions in 1995-1996 resulted in substantial mortality of 

the Isle Royale moose population (Peterson et al. 2003).  Observations on the Tanana 

Flats during the severe winter of 1965-1966, where average snow depths exceeded 90-

cm, suggest that winter conditions and poor nutrition led to a similar precipitous decline 

in the moose population (Bishop and Rausch 1974).  We considered two mortality 

scenarios:  a “best case scenario” where deep snow only impacted calf survival (Fig. 

3a), and a “worst case scenario” where deep snow influenced survival of all age classes 

(Fig. 3b).  We were unable to obtain data on fecundity after a deep snow year for a 

nutritionally stressed moose population.  Although several studies have shown an 

influence of deep snow on future fecundity of moose (Crete and Courtois 1997, Mech et 

al. 1987), population growth is largely insensitive to changes in fecundity (Gaillard et al. 

2000).  Therefore, changes in fecundity during a deep-snow year were not explored in 

the model scenarios. 

Our estimates of the impact of deep snow on survival for populations that exhibit high 

nutritional condition were derived from McGrath, Alaska moose population subsequent 

to a predator removal study (Keech et al. 2011).  Severe winter conditions were not 

experienced by this population prior to predator removal, however when a severe winter 

occurred subsequent to predator removal, calf survival was reduced while survival of 

other ages was unchanged (M. A. Keech, Alaska Department of Fish and Game, unpubl. 

data).  Therefore, deep snow only influenced survival of calves for the high nutrition 

population models.  Annual calf survival during a deep-snow year was estimated as the 

product of summer survival prior to predator removal (0.37) and winter survival from a 

year with deep snow subsequent to predator removal (0.42) for the HN/HP model (Fig. 

3a; M. A. Keech ADF&G, unpubl. data).  Calf survival for the HN/LP model during a deep 
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snow year was the product of summer survival (0.79) subsequent to predator removal 

and winter survival (0.49) from a year with deep snow subsequent to predator removal 

(Fig. 3a; M.A. Keech, ADF&G, unpubl. data).   

Simulations of all populations started at stable stage distribution with 500 females to 

allow for comparison among the populations that differed greatly in density (0.38 

moose/km2 to 1.4 moose/km2).  We compared the average population abundance over 

the 30-year-period among the three different models.  Except for the random occurrence 

of deep snow years, model simulations were deterministic.  Therefore 1000 iterations 

were performed to detect general trends in moose population responses to an increase 

in the frequency of a deep snow year.  Population projections were produced by matrix 

multiplication of the transition matrix and a population vector using the software 

MATLAB®2008bSV.  

Population Responses to Female Harvest Scenarios 

Nutritionally-stressed moose populations experiencing high levels of intraspecific 

competition are more vulnerable to conditions that can lead to sudden population 

declines from environmental stressors such as severe winters.  We considered two 

possible female harvest strategies aimed at reducing population vulnerability while 

increasing harvest opportunity.  Harvesting reproductively mature females is the fastest 

way to reduce population density and improve nutrition because these females are the 

population segment that most contributes to population growth.  Therefore, we used the 

LN/LP population model to compare the effect of harvest of non-accompanied females 

(cows ≥ 1 year that are not accompanied by a calf) to harvest of cow-calf pairs.  In each 

case, we modeled a 6% annual female harvest rate over a 5-year-period.  This yearly 

harvest rate resulted in a reduction of the modeled population to a real ADF&G 
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population objective (10,000-12,000 total moose) at the end of the 5-year-period 

(ADF&G 2010). 

For the harvest model we assumed a starting population of 10,000 females (14,500 

total moose) at stable stage distribution (Table 2; ADF&G 2010).  Survival and 

reproductive rates were assumed to be constant over the 5-year population projections.  

Because long-term empirical data from the LN/LP population (Tanana Flats/Alaska 

Range foothills) indicated that 2-year-olds rarely reproduce at high population densities, 

we constrained yearling recruitment to zero.  We limited projections to 5 years to 

investigate the short-term response of populations to selective harvest.  Because most 

hunters cannot readily distinguish between adult age-classes of moose and likely don’t 

distinguish between yearlings and adults, yearlings and adult females are likely taken in 

relative proportion to their availability.  Harvest of non-accompanied females was allotted 

across yearling and adult stages in proportion to availability and harvest of cow-calf pairs 

was similarly allotted across the three adult stages.  For the cow-calf pair harvest 

strategy we assumed a 50% chance of harvesting a female versus a male calf based on 

sex parity in the calf cohort.  Additionally, harvested cows were assumed to have only a 

single calf.  Because we modeled a harvest level to achieve a constant rate of 

population decline (6% annual female harvest rate), a different number of animals were 

harvested each year. 

Mortality is not constant throughout the year and mortality prior to hunting season 

influences which individuals are available for harvest.  In particular, calf mortality prior to 

harvest influences the proportion of adult females in each stage with accompanying 

calves at the time of harvest, and thus impacts the allocation of harvest among stage 

classes.  Therefore, we partitioned survival for all stage classes into 3 different periods:  
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survival from recruitment to harvest (first 3 months), harvest survival, and survival from 

post-harvest to recruitment the next year (remaining 9 months).  The loss of a calf in the 

first 3 months was used to recalculate the proportion of females with and without 

accompanying calves at harvest time.  Calf survival from recruitment to 3 months of age 

was 0.70 and from post-harvest to the following recruitment period was 0.71, yielding an 

annual survival rate of 0.50.  Despite studies on caribou (Whitten et al. 1992), elk (Singer 

et al. 1997), and moose (Keech et al. 2000) that suggest calf survival likely varies with 

size of the mother, there is a lack of evidence in moose that female age alone has an 

influence on calf survival (Keech et al. 2000).  Therefore, we made the simplifying 

assumption of equal calf survival across cow stage classes.  Survival of yearlings and 

adult female stages were assumed to be constant across months and all harvested 

females were removed from the population and therefore did not contribute to 

recruitment the following year. 

We estimated harvestable yield in two ways:  as the total number of animals 

harvested and as total biomass harvested (based on minimum carcass weights for adult 

females, 155-kg, and calves, 66-kg; Sylven 1995).  In addition, we evaluated the effect 

of each harvest strategy on the age-structure of the population.  Harvest strategies of 

non-accompanied females and cow-calf pairs were modeled using Microsoft Excel® with 

annual harvest numbers estimated iteratively.   

RESULTS 

Model Performance 

For years when observed population estimates are available from the Tanana 

Flats/Alaska Range foothills moose population, yearly model estimates were within 90% 

confidence intervals (CI) of the geospatial population estimate in all years except 2008 
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and 2010 (Fig. 4a).  In 1 of the 3 years allowing a comparison, model estimates 

calculated using a combination of vital rates from the HN/HP model (2 years) and HN/LP 

model (4 years) were within 90% CI of the GSPE population estimates from McGrath, 

Alaska (Fig. 4b).  Only 3 years were compared because we used the 2001 GSPE 

population estimate as the starting population estimate for the model. 

Sensitivity of Population Growth to Changes in Vital Rates 

Patterns of sensitivity of population growth rate to small proportional changes in vital 

rates were very similar across the three models (Fig. 5).  Population growth rate was 

most sensitive to changes in survival of prime and young adults and least sensitive to 

fecundity for all stage-classes (Fig. 5).  

Population Responses to Deep Snow Events 

For climate scenarios where we limited deep snow effects to a reduction in calf 

survival, population trajectories for all models showed population increase regardless of 

the frequency of a deep-snow year (Fig. 6).  Despite this deep snow did have an impact 

on population trajectories; as the frequency of deep snow years increased projected 

population sizes decreased (Fig. 6).  For the LN/LP model in particular, a comparison of 

the population growth rate between a low and high frequency of deep snow showed an 

increase in the doubling time of the population from 15 years (λ = 1.05) to 24 years (λ = 

1.03). 

When only calf survival was reduced the HN/HP and LN/LP models had similar 

population growth rates at low to moderate frequencies of deep-snow years (λ = 1.04-

1.05; Fig. 6).  In these cases the higher survival of old adults and higher fecundity of all 

stages in the HN/HP model balances the normally higher calf and yearling survival of the 

LN/LP model.  However, at a high frequency of deep-snow years, population growth of 
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the LN/LP population falls behind that of the HN/HP population (λ = 1.03 and λ = 1.04, 

respectively).  In this case the high calf and yearling survival in the LN/LP population 

during normal years was not sufficient to offset the effects of deep snow years.   

Under the scenario where survival of all stages was greatly reduced during a deep 

snow year the population trajectory for the LN/LP model was positive when the 

frequency of deep snow was low (λ = 1.01; Fig. 6).  However, the population declined 

when the frequency of deep snow was either moderate or high, with near extirpation of 

the population within 20 years at a high frequency of deep snow (λ = 0.89; Fig. 6).  In the 

LN/LP model scenario, steep population declines were largely due to increased mortality 

of prime adults.  If prime adult survival was held constant while other stage classes 

incurred high mortality during a deep snow year, population growth was positive at both 

a low (λ = 1.03) and moderate (λ = 1.01) frequency of deep snow years. 

Reduced calf survival following deep snow years had little effect on population growth 

for the HN/LP model (λ = 1.17-1.18; Fig. 6).  The relatively small increases in calf 

mortality (Fig. 3) imposed by deep snow in this scenario resulted in a population highly 

resilient to winter severity.  In fact, population growth rates differed very little from 

population growth rates when deep snow was not incorporated (Table 3). 

Population Responses to Female Harvest Scenarios 

To reach the management objective in 5 years, we modeled a harvest between 678 

and 843 (6% of the female population) non-accompanied females for a total harvest of 

3,836 individuals.  The same population decline was achieved with a harvest of between 

537 and 655 (6% of the female population) cow-calf pairs each year for a total harvest of 

5,918 moose.  This estimate includes a total of 1,479 male calves because male and 

female calves cannot be distinguished.   
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While targeted harvests of non-accompanied females or cow-calf pairs would both 

allow for desired population declines, harvest of cow-calf pairs resulted in a greater 

harvestable yield, with 54% more individuals and 11% more biomass harvested over the 

5-year-period.  In addition, fewer yearlings and adult females were harvested in the cow-

calf pair harvest strategy, and the resulting age distribution at the end of the 5-year-

period included a higher proportion of young adult and prime-adult females (0.60) than 

that for the non-accompanied females (0.57).  A population with a greater proportion of 

reproductive females is more resilient because of the immediate ability of reproductive 

females to contribute to population growth following a perturbation event. 

DISCUSSION 

Population Responses to Deep Snow Events 

The models suggested that survival of prime adults has the greatest potential to 

influence population growth.  This was supported by elasticity analyses, which indicated 

that population growth rates were most sensitive to changes in young and prime adult 

survival.  For example, when a nearly 50% reduction in prime adult survival was 

included, the nutritionally stressed population declined in response to moderate to high 

frequencies of deep snow years.  In contrast, modeled populations continued to increase 

and displayed only slight declines in population growth rate when calf survival alone was 

reduced by as much as 72% in response to deep snow.   

Adult female survival is unlikely to be strongly impacted by deep snow or other 

inclement weather conditions unless nutritional condition of the population is extremely 

poor and/or environmental stress is particularly great (Bishop and Rausch 1974, 

Peterson et al. 2003).  Indeed, in long-lived vertebrates adult female survival is the vital 

rate least affected by density-dependence and environmental factors (Eberhardt 1977, 
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2002) and, predation aside, in large herbivores substantial reductions in adult female 

survival are mostly associated with extreme environmental events (Gaillard et al. 2000).  

Despite the general resilience of adult female moose to extreme environmental events 

like deep snow years, substantial population declines have been recorded when density-

dependent (e.g. high population densities) and density-independent factors (e.g. deep 

snow) have combined to increase mortality of adult females (Bishop and Rausch 1974, 

Peterson et al. 2003). 

In contrast, in the models, even striking reductions in calf survival following deep 

snow years failed to strongly impact population growth.  In ungulates, calves generally 

have the most variable survival (16%-88%; Gaillard et al. 2000) and are the most 

vulnerable to disturbance (Gaillard et al. 2000).  Yet, populations may experience low 

sensitivity to this variability (Gaillard et al. 1998, 2000; Eberhardt 2002; but see Raithel 

et al. 2007).  Even under the highest disturbance frequency and lowest calf survival 

scenario, the low nutrition population model showed positive growth, and the population 

growth rate only declined 2% with the addition of disturbance events.  Although this did 

result in fewer moose on the landscape over the time period modeled the population still 

increased in size.  In the high-nutrition models population growth rates displayed even 

less response to the inclusion of deep snow years and increased calf mortality.  Bowyer 

et al. (1998) argued that low calf survival due to heavy predation released adult females 

from the high costs of lactation, allowing them to enter the following winter in better body 

condition.  If this is the case, it would further reduce the slight negative impacts of low 

calf survival predicted by the models because of the likely increase in future reproductive 

success of females in years following deep snow.  However, as we have seen from the 

models, reductions in calf survival during deep snow years have an impact on population 
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abundance over time.  An increase in the frequency of consecutive deep snow years 

could, therefore, result in consecutive years with low calf recruitment, introducing gaps in 

the age-structure of the population and likely resulting in less stable population 

dynamics.  This coupled with high temporal variability generally associated with calf 

survival is likely to have an influence on longer-term population trends.  Therefore, we 

suggest future models should, 1) include environmental stochasticity to better 

understand how variability in calf survival influences long-term population trends and 2) 

examine how consecutive years with deep snow influence both short- and long-term 

population trends. 

At least in the short term, nutritionally stressed moose populations are likely to benefit 

from longer growing seasons and more frequent wildfires because of the increase in 

forage availability brought on by these changes.  Conversely, populations exhibiting 

good nutrition are unlikely to increase in response to the same environmental changes.  

If predator-mediated constraints on population growth remain stable, predator-limited 

populations will likely remain relatively stable at low densities even if forage availability 

increases with climate change.  

Unlike adult female survival, fecundity in moose can be strongly influenced by deep 

snow (Saether et al. 1996) especially when moose exist at high population densities 

(Post and Stenseth 1998).  Deep snow can have negative effects on moose 

reproduction through reduced body condition of adult females (Mech et al. 1987, Crete 

and Courtois 1997, Post and Stenseth 1998).  Elasticity analysis suggested however, 

that changes in fecundity were likely to have a minimal impact on population-level 

trends.  Therefore the model results should be fairly robust without incorporating 

reductions in fecundity during a deep snow year. 
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Deterministic population models ignore the stochasticity found in natural systems 

(Morris and Doak 2002) and consequently can produce misleading population 

projections.  However, deterministic models can be very useful when vital rate data are 

sparse and if model assumptions can be biologically justified (Morris and Doak 2002).   

Our models assumed constant stage-specific vital rates across all but deep snow 

years and thereby ignored the impacts of all other environmental as well as demographic 

stochasticity, and any possible delayed effects of deep snow years.  Previous studies of 

large ungulate population dynamics indicate that environmental stochasticity has the 

greatest influence on calf survival and young adult fecundity (Gaillard et al. 2000).  

However, large variability in calf survival and young adult fecundity would likely not have 

had major impacts on population trajectories due to low elasticity values associated with 

those vital rates.  Demographic stochasticity was not incorporated into our model 

because we were not dealing with small populations.   

Although delayed effects of deep snow were not considered in the models, deep 

snow years likely would have a variety of delayed effects on fecundity and survival.  For 

instance, a substantial drop in population density caused by widespread mortality 

following a deep snow year would likely improve the nutritional plane for surviving 

individuals and result in increased reproduction and survival, albeit with a short time lag.  

Studies have shown that changes in recruitment rates for red deer lag 3 years behind 

changes in population density (Fryxell et al. 1991).  Indeed, changes in moose twinning 

lag 1 to 2 years behind changes in population density (Blood 1973, this paper).  

Following the extreme conditions that resulted in the population crash of the Isle Royale 

moose population, there was a 1-year lag before the population showed growth 

(Peterson et al. 2003).  Barring a major increase in predator:prey ratios, survival rates 
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would likely improve for all age-classes following a precipitous decline.  However, low 

elasticity values for juvenile and old adult survival indicate changes to these parameters 

would have relatively less influence on population growth rate.  Moreover, young adult 

and prime adult survival are often constrained by previous high survival rates.   

Several other factors that could contribute to a delay in the population response 

include epigenetic effects due to being born at high density (Solberg et al. 1999, 2004; 

Bonenfant et al. 2009) and slow vegetation response to a reduction in herbivory as a 

result of chronic overbrowsing.  In some cases, vegetation recovery following chronic 

overbrowsing may be quite prolonged and require a landscape disturbance such as fire.  

This is because chronic overbrowsing of preferred deciduous species often results in 

heavy mortality of those species, shifting the competitive advantage in favor of less 

palatable, late successional tree species (Kielland and Bryant 1998, Pastor et al. 2006, 

Butler and Kielland 2008) that do not support high densities of moose.  Vegetation 

recovery may then depend on the fire return interval, which even with an increase in the 

frequency of fire on the landscape could take decades (Kasischke et al. 2010).  

Therefore, we do not expect these delayed changes in survival or reproduction to have 

large, immediate impacts on population growth.  Overall, the ability of a nutritionally 

stressed moose population to rebound following a precipitous decline appears to be 

limited. 

Population Responses to Female Harvest Scenarios 

Harvesting cow-calf pairs rather than non-accompanied females achieved the 

desired population reduction while maximizing harvestable yield.  Although the desired 

population reduction could be achieved with either harvest strategy, harvest of cow-calf 

pairs resulted in a greater number of individuals and total biomass harvested over the 5-
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year-period.  The greater number of individuals removed from the landscape with cow-

calf pair harvest will reduce intraspecific competition and lead to a more immediate 

improvement in nutrition for the remaining population.  In addition, harvest of cow-calf 

pairs resulted in a lower overall harvest of yearling and adult females compared to 

harvest of non-accompanied females, leaving the population far more resilient to 

disturbance.  Harvesting cow-calf pairs is a more conservative management approach 

because population dynamics are highly sensitive to harvest of adult females (Sylven 

2003).   

The cow-calf pair harvest resulted in a greater harvestable yield because the calf 

stage contributes far less to population growth than either reproductive females or 

females nearer to reproductive age.  Even for populations subject to low predation, 

calves have relatively low survival rates, and calf mortality from harvest may be largely 

compensatory in nutritionally stressed populations that exist near carrying capacity 

(McCullough 1979, Bartmann et al. 1992, Singer et al. 1997).  Further evidence that 

juveniles were less valuable to the population than adult females was demonstrated 

when we experimentally excluded yearlings from the non-accompanied female harvest 

strategy.  When yearlings were included the total harvestable yield was greater than if 

yearlings were excluded.  This follows population dynamic theory, which suggests that a 

juvenile has relatively low value in terms of future population growth compared with a 

reproductive female that has given birth for the first time (Stearns 1992). 

Although the cow/calf harvest strategy provided more harvest opportunity and a more 

robust age structure, this harvest strategy may not always be acceptable to hunters.  In 

some areas, hunters are reluctant to harvest not only cows (Young et al. 2006) but also 

cows accompanied by calves (Young and Boertje 2004, Nilsen and Solberg 2006).  
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Nonetheless, it may be possible to achieve hunter acceptance of selective harvest 

strategies.  In Scandinavia, prior to the 1970s, it was illegal to shoot juvenile moose 

(Milner et al. 2011), but a policy to maximize yield was implemented that called for heavy 

harvest of both juveniles and adult males (Solberg et al. 1999). This harvest strategy has 

resulted in an enormously productive population that supports high annual harvest rates 

(Nilsen and Solberg 2006) and provides substantial economic value (Olaussen and 

Skonhoft 2011).  However, it has also led to variations in the sex- and age-structure of 

populations (Solberg et al. 2002, Milner et al. 2007) and overabundance issues that 

have resulted in considerable economic costs (Olaussen and Skonhoft 2011).  

Incorporating modeled harvest scenarios into public outreach and education could 

greatly improve the understanding and acceptance of female harvest strategies by the 

public. 

Management Implications 

Populations that exhibit low nutrition are likely to benefit from longer growing 

seasons and increased fire because increased nutrition, at least in the short term, is 

likely to reduce vulnerability to the effects of environmental stress.  However, with little 

predation or harvest to influence population growth, these increases in nutrition will likely 

be short-lived as increasing density will lead to intraspecific competition and plant 

succession will reduce forage quantity and quality.  When these populations return to a 

state of poor nutrition they will again be vulnerable to declines from severe weather 

events such as years with deep snow.  On the other hand, predator-limited populations 

are unlikely to respond to the same environmental changes if predator-meditated 

constraints on population growth remain stable.  The complexity of wildlife population 

dynamics coupled with the uncertainty of climate change predictions requires that 
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managers use population models to minimize risk of major population declines.  

Therefore, harvest strategies aimed at reducing vulnerability of moose are important to 

consider.  We suggest the use of cow-calf pair harvests to reduce population density is a 

more favorable strategy to minimize population vulnerability and increase harvest 

opportunity.  We acknowledge this harvest strategy may be difficult to implement without 

buy-in from local hunters, and therefore suggest educational outreach to attempt to 

explain honestly the biological benefits of cow-calf pair harvests.  It is important that the 

effects of female harvest strategies be monitored by continuous collection of age-specific 

vital rate data and independent data reflecting nutritional condition (browse surveys).  

Continuous monitoring of population indices, such as proportional browse removal 

(Seaton et al. 2011) will allow managers to evaluate the effectiveness of the harvest 

strategy and reassess population health once the original population objective has been 

met.
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Fig. 1. Stage-structured matrix model.  Matrix parameters are the stage-specific 

recruitment values (Fx), stage-specific probabilities of surviving to the next stage (Gx) 

and stage-specific probabilities of surviving within a stage (Px).
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Fig. 2. Twinning rates in relation to population density.  Data from Tanana Flats/Alaska 

Range foothills moose population. 
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Fig. 3. Annual survival probabilities under normal and deep snow conditions:  a) calf 

survival rates when only calf survival was reduced following a deep snow year and b) 

stage-specific survival rates of the low nutrition/low predation population matrix model for 

both normal and deep snow years where survival of all stages was reduced following a 

deep snow year.  C, calf survival; Y, yearling survival; YA, young adult survival; PA, 

prime adult survival; OA, old adult survival.  
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Fig. 4. Comparison of model and field population estimates.  Deterministic model 

estimates (open triangles) and geospatial population estimates of female moose (closed 

diamonds) including 90% confidence intervals from a) a moose population occupying the 

Tanana Flats/Alaska Range foothills and b) a moose population occupying a 2,896km2 

study area near McGrath, Alaska. 
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Fig. 5. Stage-structured model elasticity values.  Values incorporate survival (Sx), 

parturition (mx) and twinning (twx) for a) low nutrition/low predation, b) high nutrition/high 

predation, and c) high nutrition/low predation model.  For stages lasting more than 1 

year, SX includes survival within a stage (Px) and growth to the next stage (Gx).  
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Fig. 6. Mean population trajectories for various frequencies of years with deep snow:  a) 

low nutrition/low predation population model where calf survival is reduced from 0.50 to 

0.14 and b) where survival of all stages for the low nutrition/low predation model are 

reduced, c) high nutrition/high predation population model where calf survival is reduced 

from 0.30 to 0.16, and d) high nutrition/low predation population model where calf 

survival is reduced from 0.46 to 0.39.  Because of the large difference in scaling 

between population trajectories of the high nutrition/low predation model and the other 

models the figure does not follow the population trajectory of the high nutrition/low 

predation model past year ten to illustrate changes in the direction of the population 

trajectories for the other models.
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Table 1. Stage-specific vital rates of matrix population models.  Annual survival is partitioned between survival to the next 

stage (Gx) and survival within a stage (Px).  The parameter mx is the proportion of females giving birth and twx is the twinning 

rate. 

 Vital rates 

Stage  

Low nutrition/Low predation 

model
1 

High nutrition/High predation 

model
2 

High nutrition/High predation 

model
3 

 Gx Px mx twx Gx Px mx twx Gx Px mx twx 

  Calf 0.50 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.46 0.00 0.00 0.00 

  Yearling 0.85 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.92 0.00 0.00 0.00 

  Young adult 0.31 0.67 0.34 0.00 0.31 0.67 0.57 0.13 0.28 0.72 0.58 0.14 

  Prime adult 0.10 0.84 0.77 0.10 0.10 0.84 0.90 0.53 0.08 0.91 0.90 0.53 

  Old adult 0.00 0.71 0.71 0.13 0.00 0.83 0.84 0.49 0.00 0.95 0.84 0.50 

1 Average annual survival and reproductive data from a moose population occupying the central Tanana Flats near Fairbanks, 

Alaska (Boertje et al. 2009, Boertje unpubl).  

2 Average annual survival and reproductive data from a moose population near McGrath, Alaska prior to predator removal 

(Keech et al. 2011). 

3 Average annual survival and reproductive data from a moose population near McGrath, Alaska following predator removal 

(Keech et al. 2011). 
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Table 2. Stable stage distributions of matrix population models.  

 Stable stage distribution 

Stage  

Low nutrition/Low 

predation model  

High nutrition/High  

predation model 

High nutrition/Low 

predation model 

  Calf 0.22 0.31 0.29 

  Yearling 0.10 0.09 0.11 

  Young adult 0.23 0.19 0.24 

  Prime adult 0.35 0.28 0.26 

  Old adult 0.10 0.13 0.10 
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Table 3. Finite rates of population growth of matrix population models.  Compared model 

scenarios without deep snow and scenarios with various frequencies of deep snow.  

Deep snow years of low, moderate, and high correspond to a frequency of 2, 4, and 8 

deep snow years in a 30-year-period, respectively.  In all cases except those indicated 

with superscript increased mortality following a deep snow year was limited to calves.  

 No deep  Frequency of deep snow 

Model snow Low Moderate High 

  Low nutrition/Low predation 

1.05 1.05 1.04 1.03 

1.011 0.961 0.891 

  High nutrition/High predation 1.05 1.05 1.05 1.04 

  High nutrition/Low predation 1.18 1.18 1.18 1.17 

1 Indicates high mortality of all stages for the LN/LP model following a deep snow year.
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CHAPTER 3 

 

GENERAL CONCLUSIONS 

 

 

Climate change is likely to have both positive and negative impacts on wildlife 

populations in Interior Alaska.  An increase in the frequency of wildfire and length of the 

growing season will likely favor moose populations, whereas an increase the frequency 

of severe weather events will likely have a detrimental effect on moose. Under the 

scenarios examined in this study, our models suggested that over the short term Interior 

Alaska moose populations exhibiting good nutritional condition are resilient to an 

increase in the frequency of deep snow years.  Nutritionally stressed moose populations, 

on the other hand, appeared to be vulnerable to population declines from deep snow 

conditions when there is substantial mortality among prime adult females.  Although 

empirical studies have shown that substantial mortality among prime adult females rarely 

occurs and likely requires nutrition to be extremely poor or snow conditions to be severe 

(Gaillard et al. 2000) there is valid concern regarding the vulnerability of nutritionally 

stressed populations to a possible increase in severe weather conditions associated with 

climate change.  Adaptive management strategies that are informed by population 

models should be pursued to ensure the long-term health and resilience of these 

important moose populations.   

In nutritionally stressed populations, harvest of females, in addition to traditional bull 

harvests, has proven to be an effective way to quickly reduce population density (Young 

and Boertje 2011) and thereby relieve browsing pressure on vegetation (Boertje et al. 
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2007).  Our harvest model indicated that a harvest approach focused on cow-calf pairs 

rather than on non-accompanied females (cows ≥1 year old that are not accompanied by 

a calf) resulted in a greater harvestable yield, while harvesting fewer females.  The 

removal of more individual moose from the landscape will reduce competition for limited 

resources, and because population dynamics are highly sensitive to harvest of adult 

females with high reproductive value (Sylven 2003), the removal of fewer adult females 

leaves the population more resilient to environmental perturbations.  Thus, such a 

management strategy could prove to be a win-win situation.  

Although long-term projections of how moose will respond to climate change are 

difficult to make because of the many variables that influence moose population 

dynamics, thoughtful consideration of how moose populations will respond to climate 

change over the long term is important.  The countervailing effects of climate change 

may result in greater fluctuations in the amplitude of moose population abundance over 

time, especially if a long string of years consisting of favorable conditions are interrupted 

by year(s) with unfavorable conditions (Wilmers et al. 2007).  This is because many 

years of favorable conditions can facilitate rapid population growth to high densities, at 

which point the nutrition of the population is compromised, which may decrease the 

potential of all segments of the population to survive a severe winter.  A string of severe 

winters could reduce moose population resilience of nutritionally stressed moose, even 

leading to local extirpation of moose.  

Populations that are not limited by predation are likely to exhibit greater changes in 

population abundance than those limited by predation.  For example, although 

nutritionally-stressed moose will likely benefit from the increase in forage availability 

resulting from longer growing seasons and increased fire frequency, without 
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commensurate increases in predation or harvest to curb population growth, these 

populations are likely to quickly return to a nutritionally-stressed state and once again 

become vulnerable to extreme environmental events.  Likewise, dispersing moose 

populations without high predation or harvest to curtail growth will likely approach 

ecological carrying capacity and also become vulnerable to deep snow conditions.  Both 

of these scenarios illustrate further challenges for wildlife managers.   

For moose populations that reach a nutritionally stressed state due to a lack of top-

down control, severe winter conditions can initiate substantial population declines that 

lead to a shift in predator:prey ratios.  In multiple predator systems or systems 

dominated by wolves, high predator:prey ratios can exacerbate the precipitous decline of 

a previously food-limited population and result in a predator-limited population 

maintained at low density (“predator pit”) (Gasaway et al. 1983).  This type of scenario 

was observed for an Interior Alaska moose population that was likely near ecological 

carrying capacity at the time of several consecutive deep snow years (1965-1966, 1966-

1967).  Although no quantitative data exist, deep snow conditions resulted in substantial 

mortality, particularly for calves (Bishop and Rausch 1974).  The decline in moose 

numbers resulted in an increase in predator:prey ratios, worsened by yet another severe 

winter and concurrent harvest of moose (Gasaway et al. 1983).  Moose declined to very 

low levels following these events and only began to recover following wolf removal 

efforts initiated in 1976 (Gasaway et al. 1983).   

Although our models did not incorporate changes in predator-prey dynamics, it is 

likely that predator-prey dynamics will be affected by climate change, and that they will 

have an impact on moose population abundance under certain circumstances.  For 

example, an increase in the frequency of winter precipitation at northern latitudes, both 
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in terms of snow and rain (Groisman and Easterling 1994, Zhang et al. 2000, Kohler et 

al. 2006), could result in deeper, heavier snow (Zhang et al. 2000).  These conditions 

could facilitate wolves gaining an advantage over moose because of their ability to travel 

on top of the snow while moose, because of their heavier foot load, would have to plow 

through the deep snow (Owen-Smith 2009).  This scenario would be of particular 

concern for moose populations that exist in areas that have historically experienced a 

high frequency of winters characterized by deep snow, such as those in Western Interior 

Alaska and Southcentral Alaska.  Higher kill rates have been observed for gray wolves 

(Canis lupus) on white-tailed deer (Odocoileus virginianus; Nelson and Mech 1986) and 

elk (Cerphus elaphus; Huggard 1993) as snow depth increased.  Moreover, deep snow 

conditions have led to wolves altering their hunting behavior by increasing their pack 

size, which can increase hunting success (Post et al. 1999).  In low-density, predator-

limited populations these conditions could result in local extirpations of moose 

populations, similar to those documented for white-tailed deer (Nelson and Mech 2006).   

Climate change could also impact predator-prey dynamics in ways that benefit 

moose.  For instance, an increase in the frequency and areal extent of wildfire 

(Kasischke et al. 2010) that results in higher quality browse would influence moose 

productivity and possibly population abundance.  Although heavy predation pressure 

acts as a constraint on the response of predator-limited populations to improved habitat, 

factors that could facilitate escape of these populations from low densities include 

access to calving refugia, predator saturation, change in prey preference, and inter-pack 

strife among wolves, all of which would lead to reduced predation rates and increased 

survival of moose (Gasaway et al. 1983).  It therefore seems possible that under certain 
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circumstances interactions between climate change and predator-prey dynamics could 

lead to greater changes in population abundance of predator-limited populations.   

We suggest that future population models investigate additional climate scenarios 

likely to influence moose population dynamics.  In particular, the impacts of consecutive 

deep snow years should be examined.  Due to the influence of large-scale climate 

indices (e.g. North Atlantic Oscillation, North Pacific Oscillation), years associated with 

deep snow can be temporally correlated (Hurrell 1995).  It is possible the increase in 

environmental variability projected to occur with climate change (IPCC 2007) may result 

in more frequent and consecutive deep snow years in the future.  Several consecutive 

years of deep snow will undoubtedly have the most influence on nutritionally stressed 

moose because of their low body reserves but could also result in local extirpation of 

low-density, predator-limited populations (Nelson and Mech 2006).  In our models, when 

consecutive years with deep snow resulted in high mortality of all stages it had a 

substantial impact on moose population density.  For example, two to three consecutive 

years of deep snow resulted in a moderate population decline for our LN/LP model (3% 

population decline when deep snow years are consecutive) when only calves incurred 

high mortality, however, these populations recovered to their pre-decline density within 2 

years.  The same number of consecutive deep snow years resulted in a major 

population decline for our LN/LP model (> 35% population decline when deep snow 

years are consecutive) when we subjected all age-classes to high mortality and the 

population did not recover to pre-decline density for ≥ 20 years. 

Additional work needs to incorporate a vegetation component into the matrix model 

so we can examine how changes in browse availability as a result of climate change 

may more directly influence moose population trajectories.  The model would be a 
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simple predator-prey model where effects of climate change, plant succession, and 

moose herbivory on vegetation could be modeled explicitly.   

Further investigation of alternative harvest strategies using the stage-structured 

population model could be helpful for managers tasked with maintaining the long-term 

health and sustainability of important moose populations.  We suggest that future 

population models incorporate the male component of the population to make modeling 

scenarios more realistic and informative, and to assess other management objectives, 

including management for trophies.  Combining the knowledge that results from 

additional harvest scenarios with that from different climate scenarios will help us better 

understand how we can promote moose population resilience in the face of climate 

change.
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